
Cavity Data Management System Proposal (draft 3)
1/10/2007
Jerzy Nogiec
Marc Paterno
Claude Saunders

The following document is a proposal for developing an in-house web and database-
based system for managing data produced during cavity production and testing. The
focus is on accommodating rapid changes in cavity production and testing processes. The
key concern is balancing the needs of flexible data entry with the stability of standardized
reports.

1. Functionality
a. See Master requirements “ILC Data Management System Core

Functionality Rev 2.0”.
b. Roles

i. Administrator
ii. Process Engineer (designs traveler types)

iii. Process Manager (approves traveler types)
iv. Test Manager (assigns travelers)
v. Tester (completes assigned travelers)

vi. Analyst-Contributor (uploads comments, analysis results)
vii. Viewer Non-contributor (browses through data, reads reports)

viii. Software and DB maintainer
ix. Integrator (develops applications integrated via web services)

c. The development effort is intended to be agile and incremental in nature.
We therefore propose to implement only a subset of the total requirements
above initially. With the first implementation, the user (in some cases, a
restricted set of users) will be able to perform the following tasks:

i. Create a new traveler type via web interface.
ii. Preview, approve, and deploy new traveler types, using a workflow

that implements whatever procedure is required for the approval
process.

iii. Create a new traveler instance containing steps, instructions, and
data fields.

iv. Populate data fields during cavity production and testing via web
interface only. Automatic uploading of data shall not be possible
with the initial version.

v. Create login ids and roles, and associate roles with login id (this
function is restricted to administrators).

vi. Login to the system using some authentication scheme, obtaining
the authorized roles assigned to the login id.

vii. Modify a traveler type (as opposed to creating a new type),
retaining versioning information that associates the new version
with the older version(s) of that traveler.

viii. Produce one of a small number of reports on traveler instances. In
the initial version, these reports will be available in web page
format only.

1. Show all traveler instances for a given cavity id (or more
generally, entity id (i.e. half-cell, clean-room, etc.)).

2. Show all traveler instances of a given traveler type.
3. Show all attribute names and values for a given traveler

instance (data view of traveler instance).
4. Show traveler instance with steps and instructions (text

view of traveler instance, also suitable for printing).
5. Show in-progress/completed traveler instances.

ix. Export the data from the reports above in CSV format.
d. In addition to the human-centered functionality above, the intial

implementation will contain a prototype web service which provides an
interface to obtain traveler data. This will be used to verified compatibility
with a commercial reporting tool (e.g. Crystal Reports).

2. Architecture
a. Multi-tier architecture

i. client tier,
ii. web application and service tier

iii. back-end systems including databases and other data sources
b. Connectivity

i. Other systems and applications that need to be integrated (XML-
based web services).

ii. Thick clients. These may include specialized analysis programs
and standard reporting tools/applications.

iii. Thin clients such as web browsers or PDAs to create and complete
travelers (HTTP).

iv. On-line data acquisition and measurement systems (XML-based
web service vs. direct database access vs. file upload and
processing in the application server) (?)

3. Technology
a. Conventional web site vertical:

i. Web browser (for client)
ii. Apache web server for external authentication mechanism. We are

considering using Central Authentication Service (CAS, see
http://www.ja-sig.org/products/cas).

iii. Tomcat Servlet Engine, including use of
1. Java Server Pages (JSP: http://java.sun.com/products/jsp)
2. Java Server Faces (JSF:

http://java.sun.com/javaee/javaserverfaces) or Struts
(http://struts.apache.org) or both.

3. Java Database Connectivity (JDBC:
http://java.sun.com/javase/technologies/database/index.jsp)

4. Java Data Objects (JDO: http://java.sun.com/products/jdo/)
iv. Oracle Database

1. Conventional table design with dynamic addition of
columns to support evolving traveler definitions.

2. Metadata tables to drive web-based interfaces.
4. System Interfaces

a. Main functional web interface categories (human).
i. Administrative

1. define system users
2. define system roles and assign to users

ii. Entity Management
1. Create new entity (cavity, clean-room, coupler, half-cell)

a. ie. some physical thing to which a traveler type
would be primarily associated.

2. Manage entity namespace (e.g. Allowed cavity id names)
iii. Traveler Type Management

http://java.sun.com/products/jdo/
http://java.sun.com/javase/technologies/database/index.jsp
http://struts.apache.org/
http://java.sun.com/javaee/javaserverfaces
http://java.sun.com/products/jsp
http://www.ja-sig.org/products/cas

1. Create Traveler Type
2. Modify Traveler Type
3. Preview
4. Approval
5. Deployment
6. Browse existing types

iv. Traveler Instance Management
1. Create new instance
2. Executing steps of instance (acknowledging steps and/or

entering required data)
3. Print traveler for manual use (and subsequent data entry)

v. Traveler Instance View
1. Browse instances (clicks)
2. Query instances (e.g. enter cavity id or traveler type to find

all)
3. Export to the CSV format

b. Web Services
i. Intended for all eventual reporting access and application

integration.
ii. A stable interface to a potentially changing underlying

representation (e.g. Evolution of traveler type).
iii. May support specific queries.
iv. May support general data discovery and access for general purpose

reporting and analysis tools.
5. Effort Breakdown

a. Technology proof-of-concept
i. Development framework

1. set up subversion repository, provide Kerberos access to
developers

2. provide central Postgres instance for developers, with
individual accounts and individual working space

3. each developer must have access to the following tools:
a. Java development kit (JDK)
b. Tomcat
c. subversion (svn) client
d. JDBC driver
e. JSF implementation
f. Struts implementation
g. Ant implementation

4. optionally, each developer may want a local Postgres
installation; developers may use instead the central
development installation listed above

ii. Coding patterns
1. establish development process conventions which allow for

use of IDE’s, but do not require them

2. establish “hello world” example to distribute as starting
point to all developers

3. establish “nightly build” or “continuous build”, to build and
test the code at the head of the repository

b. Database Design
i. Meta data tables

ii. Traveler tables – dynamic, so specify behavior
c. Web Interface Buildout

i. Administrative
1. 6 pages

ii. Entity Management
1. 4 pages

iii. Traveler Type Management
1. 17 pages

iv. Traveler Instance Management
1. 5 pages

v. Traveler Instance View
1. 8 pages

d. Prototype web service
i. Data access

ii. Verify commercial reporting tool can work with it.
e. Deployment

i. Staging/integration framework
1. set up central staging oracle instance
2. set up internal-only staging instance of production

framework
ii. Production framework

1. set up apache
2. set up tomcat
3. set up production oracle instance
4. set up file repository
5. set up Central Authentication Server (CAS)
6. establish backup/restore policy

6. Deployment Considerations
a. Central Oracle
b. File System for uploaded content (PDF, JPEG, etc…)
c. Hosts for Apache and Tomcat (externally accessible)
d. Authentication source

